Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2768: 135-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502392

RESUMO

The receptor binding domain (RBD) of SARS-CoV-2 (SCoV2) has been used recently to identify the RBD sequences of feline coronavirus serotypes 1 (FCoV1) and 2 (FCoV2). Cats naturally infected with FCoV1 have been shown to possess serum reactivities with FCoV1 and SCoV2 RBDs but not with FCoV2 RBD. In the current study, COVID-19-vaccinated humans and FCoV1-infected laboratory cats were evaluated for interferon-gamma (IFNγ) and interleukin-2 (IL-2 ELISpot responses by their peripheral blood mononuclear cells (PBMC) to SCoV2, FCoV1, and FCoV2 RBDs. Remarkably, the PBMC from COVID-19-vaccinated subjects developed IFNγ responses to SCoV2, FCoV1, and FCoV2 RBDs. The most vaccinated subject (five vaccinations over 2 years) appeared to produce hyperreactive IFNγ responses to all three RBDs, including the PBS media control. This subject lost IFNγ responses to all RBDs at 9 months (9 mo) post-last vaccination. However, her IL-2 responses to FCoV1 and FCoV2 RBDs were low but detectable at 10 mo post-last vaccination. This observation suggests that initially robust IFNγ responses to SCoV2 RBD may be an outcome of robust inflammatory IFNγ responses to SCoV2 RBD. Hence, the T-cell responses of vaccine immunity should be monitored by vaccine immunogen-specific IL-2 production. The PBMC from chronically FCoV1-infected cats developed robust IFNγ responses to SCoV2 and FCoV2 RBDs but had the lowest IFNγ responses to FCoV1 RBD. The constant exposure to FCoV1 reinfection may cause the IFNγ responses to be downregulated to the infecting virus FCoV1 but not to the cross-reacting epitopes on the SCoV2 and FCoV2 RBDs.


Assuntos
COVID-19 , Coronavirus Felino , Vacinas , Humanos , Feminino , Gatos , Animais , Interferon gama , Interleucina-2 , Coronavirus Felino/metabolismo , Leucócitos Mononucleares/metabolismo , RNA Viral , Linfócitos T , RNA Mensageiro , Sorogrupo , SARS-CoV-2/metabolismo , Anticorpos Antivirais/metabolismo
2.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112894

RESUMO

The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine.


Assuntos
COVID-19 , Coronavirus Felino , Gatos , Animais , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Leucócitos Mononucleares/metabolismo , Sorogrupo , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
3.
Viruses ; 11(2)2019 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717485

RESUMO

For the development of an effective HIV-1 vaccine, evolutionarily conserved epitopes between feline and human immunodeficiency viruses (FIV and HIV-1) were determined by analyzing overlapping peptides from retroviral genomes that induced both anti-FIV/HIV T cell-immunity in the peripheral blood mononuclear cells from the FIV-vaccinated cats and the HIV-infected humans. The conserved T-cell epitopes on p24 and reverse transcriptase were selected based on their robust FIV/HIV-specific CD8⁺ cytotoxic T lymphocyte (CTL), CD4⁺ CTL, and polyfunctional T-cell activities. Four such evolutionarily conserved epitopes were formulated into four multiple antigen peptides (MAPs), mixed with an adjuvant, to be tested as FIV vaccine in cats. The immunogenicity and protective efficacy were evaluated against a pathogenic FIV. More MAP/peptide-specific CD4⁺ than CD8⁺ T-cell responses were initially observed. By post-third vaccination, half of the MAP/peptide-specific CD8⁺ T-cell responses were higher or equivalent to those of CD4⁺ T-cell responses. Upon challenge, 15/19 (78.9%) vaccinated cats were protected, whereas 6/16 (37.5%) control cats remained uninfected, resulting in a protection rate of 66.3% preventable fraction (p = 0.0180). Thus, the selection method used to identify the protective FIV peptides should be useful in identifying protective HIV-1 peptides needed for a highly protective HIV-1 vaccine in humans.


Assuntos
Epitopos de Linfócito T/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Imunogenicidade da Vacina , Peptídeos/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Gatos , Reações Cruzadas , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Humanos , Imunidade Celular , Vírus da Imunodeficiência Felina , Ativação Linfocitária , Organismos Livres de Patógenos Específicos , Vacinação/veterinária , Vacinas de Subunidades/imunologia
4.
Methods Mol Biol ; 1808: 197-219, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29956186

RESUMO

The prototype and the commercial dual-subtype feline immunodeficiency virus (FIV) vaccines conferred protection against homologous FIV strains as well as heterologous FIV strains from the vaccine subtypes with closely related envelope (Env) sequences. Such protection was mediated by the FIV neutralizing antibodies (NAbs) induced by the vaccines. Remarkably, both prototype and commercial FIV vaccines also conferred protection against heterologous FIV subtypes with highly divergent Env sequences from the vaccine strains. Such protection was not mediated by the vaccine-induced NAbs but was mediated by a potent FIV-specific T-cell immunity generated by the vaccines (Aranyos et al., Vaccine 34: 1480-1488, 2016). The protective epitopes on the FIV vaccine antigen were identified using feline interleukin-2 (IL-2) and interferon-γ (IFNγ) ELISpot assays with overlapping FIV peptide stimulation of the peripheral blood mononuclear cells (PBMC) from cats immunized with prototype FIV vaccine. Two of the protective FIV peptide epitopes were identified on FIV p24 protein and another two protective peptide epitopes were found on FIV reverse transcriptase. In the current study, the multiple antigenic peptides (MAPs) of the four protective FIV peptides were combined with an adjuvant as the FIV MAP vaccine. The laboratory cats were immunized with the MAP vaccine to evaluate whether significant levels of vaccine-specific cytokine responses can be generated to the FIV MAPs and their peptides at post-second and post-third vaccinations. The PBMC from vaccinated cats and non-vaccinated control cats were tested for IL-2, IFNγ, and IL-10 ELISpot responses to the FIV MAPs and peptides. These results were compared to the results from CD4+ and CD8+ T-cell proliferation to the FIV MAPs and peptides. Current study demonstrates that IL-2 and IFNγ ELISpot responses can be used to detect memory responses of the T cells from vaccinated cats after the second and third vaccinations.


Assuntos
ELISPOT/métodos , Vírus da Imunodeficiência Felina/imunologia , Imunogenicidade da Vacina , Linfócitos T/imunologia , Vacinas Virais/imunologia , Animais , Gatos , Citocinas/metabolismo , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Linfócitos T/metabolismo , Vacinação
5.
Viruses ; 10(5)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789450

RESUMO

The feline immunodeficiency virus (FIV) vaccine called Fel-O-Vax® FIV is the first commercial FIV vaccine released worldwide for the use in domestic cats against global FIV subtypes (A⁻E). This vaccine consists of inactivated dual-subtype (A plus D) FIV-infected cells, whereas its prototype vaccine consists of inactivated dual-subtype whole viruses. Both vaccines in experimental trials conferred moderate-to-substantial protection against heterologous strains from homologous and heterologous subtypes. Importantly, a recent case-control field study of Fel-O-Vax-vaccinated cats with outdoor access and ≥3 years of annual vaccine boost, resulted in a vaccine efficacy of 56% in Australia where subtype-A viruses prevail. Remarkably, this protection rate is far better than the protection rate of 31.2% observed in the best HIV-1 vaccine (RV144) trial. Current review describes the findings from the commercial and prototype vaccine trials and compares their immune correlates of protection. The studies described in this review demonstrate the overarching importance of ant-FIV T-cell immunity more than anti-FIV antibody immunity in affording protection. Thus, future efforts in developing the next generation FIV vaccine and the first effective HIV-1 vaccine should consider incorporating highly conserved protective T-cell epitopes together with the conserved protective B-cell epitopes, but without inducing adverse factors that eliminate efficacy.


Assuntos
Vacinas contra a AIDS/imunologia , Desenho de Fármacos , Epitopos de Linfócito T/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Vírus da Imunodeficiência Felina/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Gatos , HIV-1/imunologia , Linfócitos T/imunologia
6.
J Clin Cell Immunol ; 8(4)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29226015

RESUMO

Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to -III clinical vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1 neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection against global HIV subtypes.

7.
Vaccine ; 34(12): 1480-8, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26802606

RESUMO

The importance of vaccine-induced T-cell immunity in conferring protection with prototype and commercial FIV vaccines is still unclear. Current studies performed adoptive transfer of T cells from prototype FIV-vaccinated cats to partial-to-complete feline leukocyte antigen (FLA)-matched cats a day before either homologous FIVPet or heterologous-subtype pathogenic FIVFC1 challenge. Adoptive-transfer (A-T) conferred a protection rate of 87% (13 of 15, p < 0.001) against FIVPet using the FLA-matched T cells, whereas all 12 control cats were unprotected. Furthermore, A-T conferred protection rate of 50% (6 of 12, p<0.023) against FIVFC1 using FLA-matched T cells, whereas all 8 control cats were unprotected. Transfer of FLA-matched T and B cells demonstrated that T cells are needed to confer A-T protection. In addition, complete FLA-matching and addition of T-cell numbers > 13 × 10(6) cells were required for A-T protection against FIVFC1 strain, reported to be a highly pathogenic virus resistant to vaccine-induced neutralizing-antibodies. The addition of FLA-matched B cells alone was not protective. The poor quality of the anti-FIV T-cell immunity induced by the vaccine likely contributed to the lack of protection in an FLA-matched recipient against FIVFC1. The quality of the immune response was determined by the presence of high mRNA levels of cytolysin (perforin) and cytotoxins (granzymes A, B, and H) and T helper-1 cytokines (interferon-γ [IFNγ] and IL2). Increased cytokine, cytolysin and cytotoxin production was detected in the donors which conferred protection in A-T studies. In addition, the CD4(+) and CD8(+) T-cell proliferation and/or IFNγ responses to FIV p24 and reverse transcriptase increased with each year in cats receiving 1X-3X vaccine boosts over 4 years. These studies demonstrate that anti-FIV T-cell immunity induced by vaccination with a dual-subtype FIV vaccine is essential for prophylactic protection against AIDS lentiviruses such as FIV and potentially HIV-1.


Assuntos
Transferência Adotiva , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Imunidade Celular , Linfócitos T/imunologia , Vacinação/veterinária , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos B/imunologia , Gatos , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Imunodeficiência Felina , Interferon gama/imunologia , Interleucina-2/imunologia
8.
Hum Vaccin Immunother ; 11(6): 1540-56, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844718

RESUMO

Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.


Assuntos
Reações Cruzadas , Infecções por HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Felina/imunologia , Leucócitos Mononucleares/imunologia , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Core Viral/imunologia , Adulto , Idoso , Antígenos Virais/imunologia , Proliferação de Células , ELISPOT , Epitopos/imunologia , Feminino , Humanos , Imunofenotipagem , Interferon gama/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Immunol ; 4: 498, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24454311

RESUMO

Interferon-γ (IFNγ) plays various roles in the pathogenesis of HIV/AIDS. In an HIV-1 infected individual, the production of IFNγ is detected as early as the acute phase and continually detected throughout the course of infection. Initially produced to clear the primary infection, IFNγ together with other inflammatory cytokines are involved in establishing a chronic immune activation that exacerbates clinical diseases associated with AIDS. Unlike Type 1 IFNs, IFNγ has no direct antiviral activity against HIV-1 in primary cultures, as supported by the in vivo findings of IFNγ therapy in infected subjects. Results from both in vitro and ex vivo studies show that IFNγ can instead enhance HIV-1 replication and its associated diseases, and therapies aimed at decreasing its production are under consideration. On the other hand, IFNγ has been shown to enhance cytotoxic T lymphocytes and NK cell activities against HIV-1 infected cells. These activities are important in controlling HIV-1 replication in an individual and will most likely play a role in the prophylaxis of an effective vaccine against HIV-1. Additionally, IFNγ has been used in combination with HIV-1 vaccine to augment antiviral immunity. Technological advancements have focused on using IFNγ as a biological marker to analyze the type(s) of immunity generated by candidate HIV vaccines and the levels of immunity restored by anti-retroviral drug therapies or novel immunotherapies. Hence, in addition to its valuable ancillary role as a biological marker for the development of effective HIV-1 prophylactic and therapeutic strategies, IFNγ has a vital role in promoting the pathogenesis of HIV.

10.
Vaccine ; 32(6): 746-54, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-23800540

RESUMO

A HIV-1 tier system has been developed to categorize the various subtype viruses based on their sensitivity to vaccine-induced neutralizing antibodies (NAbs): tier 1 with greatest sensitivity, tier 2 being moderately sensitive, and tier 3 being the least sensitive to NAbs (Mascola et al., J Virol 2005; 79:10103-7). Here, we define an FIV tier system using two related FIV dual-subtype (A+D) vaccines: the commercially available inactivated infected-cell vaccine (Fel-O-Vax(®) FIV) and its prototype vaccine solely composed of inactivated whole viruses. Both vaccines afforded combined protection rates of 100% against subtype-A tier-1 FIVPet, 89% against subtype-B tier-3 FIVFC1, 61% against recombinant subtype-A/B tier-2 FIVBang, 62% against recombinant subtype-F'/C tier-3 FIVNZ1, and 40% against subtype-A tier-2 FIVUK8 in short-duration (37-41 weeks) studies. In long-duration (76-80 weeks) studies, the commercial vaccine afforded a combined protection rate of at least 46% against the tier-2 and tier-3 viruses. Notably, protection rates observed here are far better than recently reported HIV-1 vaccine trials (Sanou et al., The Open AIDS J 2012; 6:246-60). Prototype vaccine protection against two tier-3 and one tier-2 viruses was more effective than commercial vaccine. Such protection did not correlate with the presence of vaccine-induced NAbs to challenge viruses. This is the first large-scale (228 laboratory cats) study characterizing short- and long-duration efficacies of dual-subtype FIV vaccines against heterologous subtype and recombinant viruses, as well as FIV tiers based on in vitro NAb analysis and in vivo passive-transfer studies. These studies demonstrate that not all vaccine protection is mediated by vaccine-induced NAbs.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Vacinas Virais/imunologia , Animais , Contagem de Linfócito CD4 , Relação CD4-CD8 , Gatos , Proteção Cruzada , Imunização Passiva , Vírus da Imunodeficiência Felina/classificação , Vacinas de Produtos Inativados/imunologia
11.
J Virol ; 87(18): 10004-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824804

RESUMO

Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV(+)) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV(+) subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8(+) T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8(+) T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV(+) subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine.


Assuntos
Epitopos/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Felina/imunologia , DNA Polimerase Dirigida por RNA/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Animais , Proliferação de Células , Sequência Conservada , ELISPOT , Epitopos/genética , Feminino , HIV-1/genética , Humanos , Vírus da Imunodeficiência Felina/genética , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , DNA Polimerase Dirigida por RNA/genética , Adulto Jovem
12.
Methods Mol Biol ; 792: 47-63, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21956500

RESUMO

A commercial feline immunodeficiency virus (FIV) vaccine consisting of inactivated dual-subtype viruses was released in the USA in 2002 and released subsequently over the next 6 years in Canada, Australia, New Zealand, and Japan. Based on the genetic, morphologic, and biochemical similarities between FIV and human immunodeficiency virus-1 (HIV-1), FIV infection of domestic cats is being used as a small animal model of HIV/AIDS vaccine. Studies on prototype and commercial FIV vaccines provide new insights to the types of immunity and the vaccine epitopes required for an effective human HIV-1 vaccine. ELISPOT assays to detect cytokines, chemokines, and cytolytic mediators are widely used to measure the magnitude and the types of cellular immunity produced by vaccination. Moreover, such approach has identified regions on both HIV-1 and FIV proteins that induce robust antiviral cellular immunity in infected hosts. Using the same strategy, cats immunized with prototype and commercial FIV vaccines are being analyzed by feline interferon-γ and IL-2 ELISPOT systems to identify the vaccine epitope repertoire for prophylaxis.


Assuntos
ELISPOT/veterinária , Mapeamento de Epitopos , Vírus da Imunodeficiência Felina/imunologia , Vacinas Virais/imunologia , Animais , Gatos , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Síndrome de Imunodeficiência Adquirida Felina/virologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Interferon gama/imunologia , Interleucina-2/imunologia , Masculino
13.
Open AIDS J ; 6: 274-88, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23289052

RESUMO

An effective prophylactic HIV-1 vaccine is needed to eradicate the HIV/AIDS pandemic but designing such a vaccine is a challenge. Despite many advances in vaccine technology and approaches to generate both humoral and cellular immune responses, major phase-II and -III vaccine trials against HIV/AIDS have resulted in only moderate successes. The modest achievement of the phase-III RV144 prime-boost trial in Thailand re-emphasized the importance of generating robust humoral and cellular responses against HIV. While antibody-directed approaches are being pursued by some groups, others are attempting to develop vaccines targeting cell-mediated immunity, since evidence show CTLs to be important for the control of HIV replication. Phase-I and -IIa multi-epitope vaccine trials have already been conducted with vaccine immunogens consisting of known CTL epitopes conserved across HIV subtypes, but have so far fallen short of inducing robust and consistent anti-HIV CTL responses. The concepts leading to the development of T-cell epitope-based vaccines, the outcomes of related clinical vaccine trials and efforts to enhance the immunogenicity of cell-mediated approaches are summarized in this review. Moreover, we describe a novel approach based on the identification of SIV and FIV antigens which contain conserved HIV-specific T-cell epitopes and represent an alternative method for developing an effective HIV vaccine against global HIV isolates.

14.
Curr HIV Res ; 8(1): 14-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20210778

RESUMO

Feline immunodeficiency virus (FIV) discovered in 1986 is a lentivirus that causes AIDS in domestic cats. FIV is classified into five subtypes (A-E), and all subtypes and circulating intersubtype recombinants have been identified throughout the world. A commercial FIV vaccine, consisting of inactivated subtype-A and -D viruses (Fel-O-Vax FIV, Fort Dodge Animal Health), was released in the United States in 2002. The United States Department of Agriculture approved the commercial release of Fel-O-Vax FIV based on two efficacy trials using 105 laboratory cats and a major safety trial performed on 689 pet cats. The prototype and commercial FIV vaccines had broad prophylactic efficacy against global FIV subtypes and circulating intersubtype recombinants. The mechanisms of cross-subtype efficacy are attributed to FIV-specific T-cell immunity. Findings from these studies are being used to define the prophylactic epitopes needed for an HIV-1 vaccine for humans.


Assuntos
Modelos Animais de Doenças , Desenho de Fármacos , Epitopos/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Vírus da Imunodeficiência Felina/imunologia , Vacinas Virais/imunologia , Vacinas contra a AIDS/imunologia , Animais , Gatos , Humanos , Imunização Passiva , Vírus da Imunodeficiência Felina/classificação , Vírus da Imunodeficiência Felina/patogenicidade , Filogenia
15.
Vet Immunol Immunopathol ; 123(1-2): 65-80, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18295907

RESUMO

Advances in vaccine technology are occurring in the molecular techniques used to develop vaccines and in the assessment of vaccine efficacy, allowing more complete characterization of vaccine-induced immunity correlating to protection. FIV vaccine development has closely mirrored and occasionally surpassed the development of HIV-1 vaccine, leading to first licensed technology. This review will discuss technological advances in vaccine designs, challenge infection assessment, and characterization of vaccine immunity in the context of the protection detected with prototype and commercial dual-subtype FIV vaccines and in relation to HIV-1.


Assuntos
Síndrome de Imunodeficiência Adquirida Felina/imunologia , Vírus da Imunodeficiência Felina/imunologia , Vacinas Virais/imunologia , Animais , Gatos , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Síndrome de Imunodeficiência Adquirida Felina/virologia , Imunidade Celular/imunologia , Vacinas de Subunidades/química , Vacinas de Subunidades/imunologia , Vacinas de Subunidades/farmacologia , Vacinas Virais/química , Vacinas Virais/farmacologia
18.
AIDS ; 19(14): 1457-66, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16135898

RESUMO

BACKGROUND: Based on previous analysis of feline immunodeficiency virus (FIV)-specific cross-reactive antibodies to HIV-1 p24, cats vaccinated with HIV-1 p24 were evaluated for cross-reactive immunity to FIV. OBJECTIVE: : To determine the level of cross-reactivity that exists between HIV-1 and FIV p24 and its implications for vaccine prophylaxis. METHODS: Specific-pathogen-free cats were immunized three times with HIV-1 p24 in Ribi adjuvant, with (n = 18) or without cytokine (n = 6). Control cats were immunized three times with adjuvant (n = 10) or phosphate-buffered saline (PBS; n = 5). All immunized cats were challenged with either subtypes B or A/B FIV, and monitored by virus isolation, proviral PCR, FIV-specific antibodies, and feline interferon-gamma ELISpot for T-cell activities. RESULTS: Of 18 cats vaccinated with subtype B HIV-1 (HIV-1LAI/LAV, HIV-1UCD1) p24 in Ribi/cytokine adjuvant 14 (78%) were protected against FIV challenges (subtype Agag and Bgag) that infected all 15 adjuvant- or PBS-immunized cats. Furthermore, only three of six (50%) cats vaccinated with FIV p24 in Ribi/cytokine adjuvant were protected against similar FIV challenge. HIV-1 p24 vaccination induced weak cross-reactive antibodies to FIV p24, which did not correlate with vaccine efficacy. However, the peripheral blood mononuclear cells from HIV-1 p24-vaccinated/protected cats at 33-34 weeks post-FIV challenge responded to three T-cell responsive peptides at the carboxyl-terminus of the FIV p24, whereas those cells from the infected control cats had minimal to no responses to the same peptides. CONCLUSIONS: These results suggest the importance of including lentiviral p24 as vaccine immunogen for human AIDS vaccine. Moreover, these results suggest the potential importance of evolutionarily conserved, cross-protective epitopes in vaccine protection.


Assuntos
Vacinas contra a AIDS/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Proteína do Núcleo p24 do HIV/imunologia , HIV-1/imunologia , Vírus da Imunodeficiência Felina/imunologia , Animais , Anticorpos Antivirais/análise , Linfócitos B/imunologia , Gatos , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/imunologia , Síndrome de Imunodeficiência Adquirida Felina/imunologia , Imunidade Celular , Immunoblotting , Linfócitos T/imunologia
19.
J Feline Med Surg ; 7(1): 65-70, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15686976

RESUMO

Vaccine trials were undertaken to determine whether the Fel-O-Vax FIV, a commercial dual-subtype (subtypes A and D) feline immunodeficiency virus (FIV) vaccine, is effective against a subtype B FIV isolate. Current results demonstrate the Fel-O-Vax FIV to be effective against a subtype B virus, a subtype reported to be the most common in the USA.


Assuntos
Síndrome de Imunodeficiência Adquirida Felina/imunologia , Síndrome de Imunodeficiência Adquirida Felina/prevenção & controle , Vírus da Imunodeficiência Felina/imunologia , Vacinas Virais/imunologia , Animais , Gatos , Vírus da Imunodeficiência Felina/genética , Vacinas de Produtos Inativados/imunologia , Medicina Veterinária
20.
J Vet Med Sci ; 65(12): 1373-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14709831

RESUMO

To investigate temporal dynamic changes in the synthesis of chondroitin 6-sulfate (CS6) and chondroitin 4-sulfate (CS4) in vitro, normal articular cartilage of femoral heads was harvested from three dogs. Chondrocytes were isolated and cultured in alginate microspheres for 21 days. On days 7, 14 and 21, DNA content was quantified by fluorometric assay using Hoechst 33258. On days 14 and 21, proteoglycans were extracted, and the amounts of CS6 and CS4 were quantified after chondroitinase ABC digestion using capillary electrophoresis. The DNA content and amounts of CS6 and CS4 increased during the culture period. The amounts of CS6 and CS4 divided by DNA content revealed that the synthesis of CS6 was more up-regulated than CS4.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Sulfatos de Condroitina/biossíntese , Animais , Cartilagem Articular/citologia , Células Cultivadas , Condrócitos/citologia , DNA/metabolismo , Cães , Cinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...